
R
EV

IE
W

Nephrol Dial Transplant , 2025, 40 , ii4–ii17 

https://doi.org/10.1093/ndt/gfae253

The role of the intestinal microbiome in cognitive 

decline in patients with kidney disease 

Carsten A. Wagner 1 ,∗, Isabelle Frey-Wagner 2 ,∗, Alberto Ortiz 3 , Robert Unwin 

4 , Sophie Liabeuf 5 ,6 , Yoko Suzumoto 7 ,8 ,
Anna Iervolino 7 ,9 , Alessandra Stasi 10 , Vincenzo Di Marzo 11 ,12 , Loreto Gesualdo 10 and Ziad A. Massy 13 ,14 ; on behalf of CONNECT 

Action (Cognitive Decline in Nephro-Neurology European Cooperative Target) collaborators 

1 Institute of Physiology and Zurich Kidney Center, University of Zurich, Switzerland 
2 Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland 
3 Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, RICORS2040, Madrid, Spain 
4 Department of Renal Medicine, University College London, London, UK 
5 Pharmacoepidemiology Unit, Department of Clinical Pharmacology, Amiens-Picardie University Medical Center, Amiens, France 
6 MP3CV Laboratory, Jules Verne University of Picardie, Amiens, France 
7 Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino, Italy 
8 Institute of Biochemistry and Cell Biology, National Research Council of Italy, Naples, Italy 
9 University of Campania “L. Vanvitelli”, Naples, Italy 
10 Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, 
Bari, Italy 
11 Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ and INAF, Centre NUTRISS, Faculties of 
Medicine and Agriculture and Food Sciences, Université Laval, Québec City, Canada 
12 Joint International Research Unit for Chemical and Biomolecular Research on the Microbiome and its impact on Metabolic Health and Nutrition 
(JIRU-MicroMeNu) between Université Laval Québec, Canada and Consiglio Nazionale delle Ricerche, Institute of Biomolecular Chemistry, Pozzuoli, Italy 
13 INSERM Unit 1018, Team 5, CESP, Hôpital Paul Brousse, Paris-Saclay University and Versailles Saint-Quentin-en-Yvelines University (UVSQ), Villejuif, France 
14 Association pour l’Utilisation du Rein Artificiel dans la région parisienne (AURA) Paris, France and Ambroise Paré University Hospital, APHP, Department of 
Nephrology Boulogne-Billancourt, Paris, France 
Correspondence to: Carsten A. Wagner; E-mail: Wagnerca@access.uzh.ch
∗These authors share first authorship. 
† Members of the The CONNECT consortium are listed in the Acknowledgements. 

ABSTRACT 

Cognitive decline is frequently seen in patients with chronic kidney disease (CKD). The causes of cognitive decline in these patients 
are likely to be multifactorial, including vascular disease, uraemic toxins, blood–brain barrier leakage, and metabolic and endocrine 
changes. Gut dysbiosis is common in patients with CKD and contributes to the increase in uraemic toxins. However, the gut mi- 
crobiome modulates local and systemic levels of several metabolites such as short-chain fatty acids or derivatives of tryptophan 

metabolism, neurotransmitters, endocannabinoid-like mediators, bile acids, hormones such as glucagon-like peptide 1 (GLP1) or 
cholecystokinin (CCK). These factors can affect gut function, immunity, autonomic nervous system activity and various aspects of 
brain function. Key areas include blood–brain barrier integrity, nerve myelination and survival/proliferation, appetite, metabolism 

and thermoregulation, mood, anxiety and depression, stress and local inflammation. 
Alterations in the composition of the gut microbiota and the production of biologically active metabolites in patients with CKD are well 
documented and are favoured by low-fiber diets, elevated urea levels, sedentary lifestyles, slow stool transit times and polypharmacy. 
In turn, dysbiosis can modulate brain function and cognitive processes, as discussed in this review. Thus, the gut microbiome may 
contribute to alterations in cognition in patients with CKD and may be a target for therapeutic interventions using diet, prebiotics 
and probiotics. 
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The loss of cognitive function in patients with CKD results in a 
loss of quality of life for patients, a burden on their families and 
increased healthcare costs, and raises ethical issues such as the 
eligibility of these patients for kidney transplantation [3 ]. The in- 
crease in diseases that cause CKD, such as diabetes, obesity and 
hypertension, and the ageing of societies in developed countries 
require a better understanding of the causes of CKD and its im- 
pact on cognition in order to develop strategies to prevent or better 
treat cognitive decline [1 , 2 ]. 

In recent years, the gut and its microbiome have emerged 
as an important modulator of central nervous system (CNS) 
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NTRODUCTION 

ognitive function declines in patients with acute kidney injury
AKI) or chronic kidney disease (CKD) at a much higher prevalence
han in a healthy matched population [1 , 2 ]. The progressive loss
f brain function can affect many areas, including motor function,
leep, eating control, mood and inhibitory control, and cognitive
unctions such as short- and long-term memory and attention [1 ,
 ]. Cognitive decline and CKD share common risk factors such as
iabetes, obesity, hypertension, autoimmunity, genetic risk factors
nd lifestyle (e.g. smoking, diet, etc.), suggesting some common

athological mechanisms [1 , 2 ]. 
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Figure 1: Crosstalk between gut microbiome and brain mediated by gut microbiome–derived metabolites, hormones produced by enteroendocrine 
cells, the enteric and autonomous nerve system (ANS), and hormones produced by the brain. Various brain functions are modulated by these 
pathways. Figure modified from [8 ]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

function in health and disease. As discussed below, multiple
direct and indirect mechanisms mediate the crosstalk between
CNS and gut functions. Various components of the gut micro-
biota interact directly with the (epithelial) cells of the intesti-
nal barrier. In addition, the gut microbiota produces metabolites
that act on epithelial, sensory and immune cells embedded in
the gut wall and are transported to the brain. CKD modulates
the composition and function of the gut microbiota and may
thereby alter gut–CNS interactions directly or indirectly by al-
tering immunity or metabolism [4 –8 ]. Emerging therapies aim to
modulate the gut microbiota and may offer preventive and/or
therapeutic opportunities in patients with CKD and cognitive
decline. 

This review summarizes recent developments in our under-
standing of gut microbiota modulation of CNS function, partic-
ularly in the context of CKD, and discusses potential preventive
or therapeutic approaches targeting the gut microbiota. In the ab-
sence of experimental data directly addressing the role of micro-
biota in the development of cognitive decline in patients (or ani-
mal models) with CKD, we synthesize information from different
fields. The review will provide an overview of potentially related
areas rather than an in-depth discussion of molecular mecha-
nisms, which would be speculative or only by analogy to estab-
lished roles of microbiota in other neurological disorders. We re-
fer the interested reader to the excellent and recent reviews that

have discussed mechanisms in these areas. 
THE GUT MICROBIOME AND ITS IMPACT 

ON THE ENTERIC, AUTONOMOUS AND 

CENTRAL NERVOUS SYSTEMS 

The gut microbiome is made up of bacteria, yeast and viruses.
Here we will focus on the bacterial component, which is the best
studied of the three. The six most abundant bacterial phyla in-
clude Bacillota (Firmicutes), Bacteroidota, Actinomycetota, Pseu- 
domonadota, Synergistota and Verrumicrobia [9 ]. However, Bacil- 
lota and Bacteroidota represent more than 90% of all bacteria in
the healthy gut. As discussed below the composition and activity 
of the gut microbiota is strongly influenced by a variety of factors
relevant to patients with CKD. These include diet, physical activity,
drugs and metabolites cleared by the kidneys. 

The activity of the gut microbiota affects brain function in a 
variety of ways in healthy individuals, and changes in the micro- 
biota can therefore have profound effects on brain integrity and 
function as reviewed recently [4 –8 , 10 –13 ] (Fig. 1 ). Mechanisms of
gut microbiota–brain crosstalk have been excellently explained in 
references [14 ] and [15 ]. 

Briefly, data from animal models and humans suggest that the 
gut microbiome modulates directly and indirectly several brain 
functions, including response to stress, anxiety-like behaviour,
depression-like behaviour, nociception, appetite and hunger, taste 
preferences, or metabolic regulation by the CNS. As evident from 

neurodegenerative diseases and the possible involvement of the 
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Figure 2: Interactions of gut-derived factors, kidney function and brain functions. ENS, enteric nerve system; ANS, autonomous nerve system. 
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ut microbiome, also motor functions, memory and other cogni-
ive domains are influenced by the gut microbiome. 
The gut microbiota modulates systemic and brain functions in

ifferent ways mostly through neuroimmune and neuroendocrine
athways that often involve vagal nerves and may be mediated
y various bacteria-derived metabolites such as short chain fatty
cids (SCFAs), mostly butyrate, tryptophan and secondary bile
cids, as well as neurotransmitters or their modulators. These
olecules interact with enteroendocrine cells, enterochromaffin
ells, intestinal epithelial cells and immune cells, or circulate sys-
emically and reach directly the brain [4 ]. Various neurotransmit-
ers or other neuroactive molecules are produced or their secre-
ion promoted by the gut microbiota including GABA, serotonin
orepinephrine, acetylcholine, dopamine, oxytocin, endocannabi- 
oids and endocannabionoid-like mediators, brain-derived neu-
otrophic factor (BDNF), and SCFAs [5 , 16 , 17 ]. These mediators
ay either directly influence brain functions or act on receptors
resent in epithelial cells, enteric nerve cells or the autonomous
erve system. Various bacteria-derived metabolites modulate the
unction of enteroendocrine or enterochromaffin cells which re-
ease different endocrine factors including glucagon-like peptide
 (GLP1) cholecystokinin (CCK) or serotonin, which regulate brain
unction as well as intestinal (e.g. motility and transit time, secre-
ion, absorptive processes) and metabolic activity (e.g. insulin se-
retion, pancreatic enzyme secretion). Their effects on food intake
re best studied but neuroprotective actions of GLP1 are emerg-
ng [18 ]. The activity of the enteroendocrine and enterochromaf-
n cells is strongly regulated by dietary intake of carbohydrates,
roteins (particularly tryptophan derivates such as in the kynure-
ine pathway originating from amino acid fermentation) and fat,
s well as by SCFAs (via GPR43 and GPR41 receptors or epige-
etic modulation) and secondary bile acids (via FXR receptors)
roduced by gut microbiota [4 ]. Gut microbiota also modulate
esident immune cells that release pro- and anti-inflammatory
ignals affecting gut barrier integrity as well as systemic im-
une functions [5 ]. Effects of the gut microbiome extend beyond
hort-term regulation of brain function. Factors such as SCFAs or
ipopolysaccharides (LPS) produced by gut microbes or endoge-
ous mediators modulated by microbial products, such as BDNF,
 t  
ffect directly or indirectly neurogenesis, synaptic plasticity, neu-
otransmitter synthesis or blood–brain barrier (BBB) integrity [8 ]
see also below). 
Gut microbiome composition and activity is also regulated by

utput from the CNS via the autonomous nerve system and en-
eric nerve system that affects gut motility and stool transit time,
ia regulating dietary intake (hunger and satiety), and secretion of
igestive juices, bicarbonate, antimicrobial peptides and immune
unctions. Moreover, the regulated release of different hormones
uch as thyroid hormones, growth hormone and stress hormones
mostly cortisol) has profound effects of gut function and gut mi-
robiota [4 , 5 ] establishing a reciprocal regulation and interaction
etween both organs. 
Kidney function can modulate the interactions between gut
icrobiota and brain by clearing circulating factors by filtration
r active tubular secretion which is most obvious for bacteria-
erived molecules that act as uraemic toxins in CKD (see below)
Fig. 2 ). 

EX DIFFERENCES IN THE GUT 

ICROBIOME BRAIN AXIS 

cross the lifespan, sex differences in the diversity and composi-
ion of the gut microbiome have been found in animals and hu-
ans. Sex hormones can modulate the gut microbiome and vice
ersa [19 ]. Gut bacteria metabolize sex hormones, their precur-
ors and metabolites, and may thereby influence sex hormone–
ependent host functions [20 –22 ]. Age-related declines in both oe-
trogen and testosterone have been implicated in the pathogene-
is of Alzheimer’s disease [23 , 24 ]. Oestrogens may help maintain
holinergic tone, thereby reducing the deposition of β-amyloid
laques in the brain [25 ]. The role of the gut microbiome in sex
ifferences in human CKD and its manifestations will require fur-
her attention. 

HANGES OF THE GUT MICROBIOME IN 

KI/CKD 

n AKI and CKD, changes in the gut microbiome may contribute to
he manifestations of CKD and AKI (e.g. by providing precursors
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Figure 3: Factors causing intestinal dysbiosis in patients with CKD and the impact of dysbiosis on brain functions. Red arrows negative impact, green 
arrows positive factors reduced by dysbiosis-induced factors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for uraemic toxins) and may also modulate the kidney resilience
to injury and its ability to support brain health. 

THE COMPOSITION OF THE GUT 

MICROBIOME IN KIDNEY DISEASE 

Dysbiosis of the gut microbiome has been recognized as a key
contributor to the pathogenesis of both AKI and CKD, influenc-
ing disease progression and therapeutic outcomes. In kidney dis-
ease, disruption of the balance of the gut microbiota leads to a
reduction in microbial diversity by promoting a shift in commu-
nity structure, increasing the abundance of proteolytic bacteria
and decreasing saccharolytic populations. These changes alter the
bacterial metabolite output, and increase intestinal barrier per-
meability and systemic inflammation, which can exacerbate kid-
ney damage [26 –28 ]. 

When discussing gut microbiome alterations in patients with
CKD in comparison with healthy individuals, important con-
founding factors must be considered, as recently discussed [29 ].
These confounders include not only estimated glomerular filtra-
tion rate, but also age, lifestyle factors such as sedentary lifestyle
or exercise, differences in diet (especially fibre and water intake),
comorbidities known to influence the gut microbiome (diabetes,
hypertension, inflammatory diseases), host genetics, time of sam-
pling (day and season), medications and stool transit time (often
reduced in patients with advanced stages of CKD). Unfortunately,
many previous studies were either unaware of these confounders
or ignored their importance, and future studies need to be de-
signed to include these variables in the analyses [29 ]. Similarly, the
changes in gut microbiome composition discussed below must be
interpreted with caution, as many studies were also too small to 
account for all confounders. 

In mice, ischaemia–reperfusion injury, a model for AKI, higher 
abundance of Clostridium , Ruminococcus and Enterobacteriaceae 
and lower abundance of Bifidobacterium and Lactobacilli was found 
[30 ]. The role of the gut microbiome in also modulating the out-
come from AKI has been recently reviewed [31 ]. Patients with CKD
show significant changes in the composition of their gut micro- 
biota, including a relative decrease in Prevotellaceae and Roseburia 
and an increase in pathobionts such as Enterobacteriaceaecae,
Streptococcaceae and Enterococcus [32 ]. This is associated with an 
overall decrease in the production of SCFAs such as butyrate and 
an increase in urease activity [33 , 34 ]. Similarly, changes in the di-
versity of the gut microbiome have been reported in patients on 
haemodialysis or peritoneal dialysis [35 ]. 

The causes of dysbiosis in patients with CKD are multifacto- 
rial (Fig. 3 ). Major contributors are elevated plasma urea levels,
often sedentary lifestyles (especially in haemodialysis patients),
low-fibre diets, constipation and slow stool transit times, and 
polypharmacy. In CKD, the intestinal epithelium secretes urea 
into the intestinal lumen, where it is hydrolysed by bacterial ure- 
ases to ammonia and binds protons (i.e. raises the intralumi- 
nal pH) to form ammonium. Higher luminal pH and urea lev- 
els favour the growth of bacteria that use urea as an energy
source. Whether high urease activity is beneficial or detrimental 
remains an open question. Ammonia is well known as a neuro- 
toxic agent in hepatic encephalopathy, while recent data in mice 
suggest that gut-derived ammonia may be an important precur- 
sor for brain metabolism to produce glutamine, glutamate and 
GABA [36 ]. Low levels of glutamate and GABA are associated with
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epressive-like behaviour in mice and restoring brain glutamine
evels in mice with reduced intestinal ammonia production re-
ersed depression. 
Diet has a profound effect on the diversity and activity of the

ut microbiome [37 –39 ]. Patients with CKD have dietary patterns
hat favour loss of diversity and dysbiosis. This is partly due to
he specific dietary advice given to patients with CKD, which in-
ludes restricting fruit, vegetables and nuts (to control potas-
ium), as well as some other high-fibre foods, all of which are es-
ential to support butyrate-producing bacteria. Low-protein diets
lso modulate the gut microbiome, increasing Lactobacillaceae,
acteroidaceae and Streptococcus anginosus , while decreasing Rose-
uria faecis and Bacteroides eggerthii . Keto analogue diets also affect
icrobiome composition [9 ]. 
Diets low in fibre are also associated with another cause of dys-

iosis, as fibre is important in binding water (and other toxins)
nd accelerating stool transit time. Low fibre in combination with
yperkalemia and water restriction, autonomic neuropathy, low
hysical activity, and potassium and phosphate binders can pro-
ote constipation [40 ]. Low stool transit time increases dysbiosis
lso independently from the presence of CKD [41 , 42 ]. 
Low physical activity in patients with CKD [43 ] is another risk

actor for dysbiosis. High physical activity in non-CKD individuals
s associated with higher microbiota diversity and higher produc-
ion of SCFAs [44 ]. Physical activity also associates with shorter
tool transit times, reduced levels of bile acids and generally lower
evels of systemic and intestinal inflammation, also increasing in-
estinal barrier function [45 ]. 
Patients with CKD are often exposed to a variety of medications,

ncluding different classes of antihypertensives, sodium-glucose 
otransporter 2 (SGLT2) inhibitors, antidiabetic drugs such as
etformin, laxatives, proton pump inhibitors, iron supplements,
hosphate binders, vitamin D supplements and antibiotics [46 ,
7 ]. In patients with cancer, use of chemotherapy and radiother-
py usually contribute to alterations of the gut microbiota [48 ].
olypharmacy is associated with poorer clinical outcomes and has
 profound effect on the microbiota. Most of the drugs listed above
re associated with multiple changes in the microbiota, even in
atients without CKD [9 ]. The loss of microbial diversity caused
y these drugs predisposes pathogenic bacteria to overgrowth, as
xemplified by the increased risk of Clostridium difficile infection
n patients with CKD [49 ]. Many non-antibiotic drugs have been
ecently shown to influence microbiota biology, including some
ommonly used in CKD such as vitamin D [50 –53 ]. 

ole of gut-derived uraemic toxins in CKD and AKI 
raemic toxins, as classified by the EUTox working group, in-
lude small water-soluble molecules, middle-sized molecules and
rotein-bound uraemic toxins (PBUTs), which accumulate due to
educed clearance [54 ]. Notably, plasma levels of these toxins rise
ith worsening kidney function, peaking in kidney failure [55 ].
dditionally, renal replacement therapies like haemodialysis and
eritoneal dialysis are less effective at removing middle-sized and
BUTs, leading to their accumulation in various organs and tis-
ues [56 ]. 
The primary uraemic toxins derived from the gut microbiota

nclude indoxyl sulfate, p-cresyl sulfate and trimethylamine N-
xide (TMAO). They are produced through the fermentation of
roteins and amino acids by gut bacteria. Indoxyl sulfate and p-
resyl sulfate are generated from tryptophan and tyrosine, re-
pectively, and are associated with vascular damage, endothe-
ial dysfunction and increased cardiovascular risk [57 , 58 ]. TMAO,
erived from dietary choline and carnitine, has been linked to cog-
itive decline and atherosclerosis and adverse cardiovascular out-
omes in CKD patients [59 –62 ]. These toxins exert their deleteri-
us effects by inducing oxidative stress, inflammation and fibrosis
63 ]. PBUTs cause multi-organ damage and, by increasing in the
ystemic circulation, contribute to multiple comorbidities such
s cardiovascular disease, immune dysfunction, malnutrition and
nflammation [64 ]. 
The condition can be replicated in animal models where

nduction of renal failure increases accumulation of various
raemic toxins that affect BBB integrity and cognitive functions,
s well as other organ functions (e.g. cardiovascular functions)
65 –69 ]. 

he gut microbiota and kidney and brain resilience 
umans, their ancestors and their gut microbiome have been
haring metabolites for millions of years, so it is not surprising
hat the microbiota produce metabolites that enhance the re-
ilience of human tissues to injury [70 ]. For example, dietary fi-
re is metabolized to SCFAs such as acetate, propionate and bu-
yrate, all of which have been associated with improved health
utcomes in multiple preclinical and clinical contexts [71 ]. The
nteraction between diet, microbiota and host is so close and rel-
vant to health that even maternal dietary fibre has a long-term
ffect on the cardiometabolic health of offspring, an effect medi-
ted by SCFAs and their receptors [72 ]. In addition to activating
pecific receptors, SCFAs modulate the epigenome, as exempli-
ed by butyrate inhibition of histone deacetylase, and protect the
rain [73 , 74 ]. Microbiota production of SCFAs can be perturbed by
he metabolic conditions of uraemia itself, as discussed below, but
lso by metabolic diseases that cause CKD, as exemplified by lyso-
b3, a metabolite accumulated in Fabry disease that decreases
utyrate production [75 ]. 
A link has been established between microbiota-derived SCFAs

nd kidney and brain resilience. For example, butyrate is renopro-
ective and prevents nephrotoxic AKI in mice by preserving the
xpression of renoprotective factors such as alpha-klotho, PGC1 α
nd Nlrp6 [76 ], which are lost during AKI and CKD and have anti-
nflammatory activity [77 –80 ]. Indeed, alpha-klotho administra-
ion reproduced the renoprotective effects of butyrate, including
educed renal inflammation [76 ]. Interestingly, prophylactic bu-
yrate administration was not protective: butyrate had to be ad-
inistered during AKI. This has important clinical implications if

ranslated to humans: most AKI episodes occur in the hospital,
here antibiotic use, fasting, reduced food intake and parenteral
utrition interfere with fibre delivery to the gut microbiota and
he microbiota’s ability to produce butyrate. 
Reduced renal production of alpha-klotho during renal injury

as systemic effects that may involve the brain, as renal tubu-
ar cells are the major source of circulating alpha-Klotho levels
81 ], alpha-klotho deficiency causes cognitive impairment in mice
82 ] and partially reproduces the transcriptome of brain dementia
83 ], plasma alpha-klotho levels are associated with cognition in
umans [84 , 85 ], and maintaining or increasing circulating alpha-
lotho levels by various means, including parenteral administra-
ion, protects against cognitive deficits in both mice and rhesus
onkeys [86 , 87 ]. A key mediator of brain protection by circu-

ating alpha-klotho is CXCL4/platelet factor 4 (PF4), a platelet-
erived cytokine that crosses the BBB and may account for the
rain-rejuvenating effect of blood in young mice [88 –90 ]. Indeed,
ncreasing PF4 levels may be one of the anti-inflammatory path-
ays triggered by alpha-klotho [90 ]. 
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Figure 4: Kidney disease has a two-hit impact on brain health by promoting toxin availability and decreasing resilience to injury. Kidney disease is 
characterized by the loss of multiple kidney functions, ranging from excretion of uraemic toxins to production of tissue protective and antiaging 
factors such as alpha-klotho. Gut microbiota products, such as SCFAs (such as butyrate), are instrumental in preserving the kidney production of 
Klotho (determining circulating Klotho levels), which are also preserved by novel kidney protective drugs. SCFAs also promote the secretion of GLP1. 
Circulating alpha-klotho preserves brain health by increasing availability of the exerkine (i.e. also released in response to exercise) CXCL4/platelet 
factor 4 (PF4). Closing the circle on the relationship between lifestyle, kidney and brain health, and kidney protective medications, other microbiota 
products such as endocannabinoid metabolites, regulate motivation of exercise and GLP1 receptor agonists modulate diet. Blue arrows indicate 
modulation, red arrows indicate a negative impact and green arrows indicate positive impact. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Butyrate and Nlrp6 also protect against gut inflammation [91 ,
92 ]. Gut inflammation may spread systemically to reduce re-
nal alpha-Klotho expression. Indeed, systemic inflammation de-
creases renal alpha-Klotho production, and anti–tumour necrosis
factor antibodies preserve renal alpha-Klotho in the presence of
gut inflammation [79 , 93 ]. 

As PF4 is an exerkine, i.e. a signalling molecule released in re-
sponse to acute and/or chronic exercise [25 ], the interaction of diet
(fibre), butyrate-producing microbiota and renal-derived alpha-
klotho is at the crossroads of lifestyle (healthy diet plus exercise-
induced exerkines) and drugs for the prevention and treatment
(e.g. via strategies such as SGLT2 inhibitors and GLP1 receptor ag-
onists) of kidney disease and its effects on the brain [94 –98 ]. These
novel kidney-protective drugs may also have beneficial effects
on gut microbiota [99 –101 ] and brain health, and conversely, SC-
FAs promote GLP1 secretion [100 ]. Other microbiota products may 
contribute to healthy brain ageing by interacting with lifestyle.
For example, microbiome-dependent production of endocannabi- 
noid metabolites in the gut increases dopamine levels in the 
ventral striatum during exercise, thereby increasing motivation 
to exercise [102 ], again linking microbiota to renal health via 
exercise dependent alpha-Klotho, healthy lifestyle and delayed 
brain ageing. 

Overall, all studies on the adverse brain effects of uraemic tox- 
ins formed in AKI or CKD should be viewed conceptually as a dou-
ble hit: in addition to injury-inducing uraemic toxins, AKI and 
CKD are characterized by Klotho depletion, which reduces the 
resilience of the brain and other tissues to insults. (Figure 4 ). 



ii10 | Nephrol Dial Transplant, 2025, Vol. 40, No. 14

T
c
A  

o  

I  

o  

c  

o

A
R  

c

T
D  

d  

b  

m  

e  

r  

i  

h  

l  

b

V
C  

V  

e  

a  

u  

d  

t  

[

N
L  

u  

I  

t  

e  

s  

l  

m  

a  

p  

t  

a
 

m  

t  

a  

g  

t  

w  

m  

e
i  

F  

s  

b  

G

N
U  

c  

c  

d  

t  

a  

b  

a  

p

M
T  

t  

b  

t  

b  

p  

i  

c  

o  

[  

a

T
T
B  

c  

a  

c  

r  

g  

b

P
P  

n  

a  

c  

a  

s  

o  

e

D
D  

p  

w  

c  

e  

i  

t  

b  

o  

c  

t  

[  

c  

o  

f  

s  
he altered gut microbiome and its links to 

ognition in CKD 

s discussed above, several metabolites produced by the healthy
r dysbiotic microbiome affect key brain structures and functions.
t is therefore not surprising that changes in the gut microbiome
bserved in animal models or in patients with CKD may be asso-
iated with or cause cognitive dysfunction. Some of these effects
n the brain are briefly discussed below. 

lpha-klotho 
educed effects of SCFAs on alpha-klotho and cognition as dis-
ussed above. 

he BBB 

irect effects of uraemic toxins on the integrity of the BBB are well
ocumented and loss of barrier function is implicated in several
rain pathologies [103 –105 ]. The BBB is disrupted both in animal
odels of CKD [66 ] and in patients with kidney failure [106 ]. Sev-
ral toxins released by bacteria, such as LPS or uraemic toxins de-
ived from bacterial products such as indoxyl sulfate, impair BBB
ntegrity by acting on the toll-like receptor 4 (TLR4), or the aryl
ydrocarbon receptor (AhR), respectively [67 , 68 ]. Elevated urea
evels also activate matrix metalloproteinase-2, leading to BBB
reakdown [107 ]. 

ascular damage 
KD is a major risk factor for vascular damage and dysfunction.
ascular damage promotes and causes neurodegenerative dis-
ase and cognitive decline [108 , 109 ]. Several uraemic toxins such
s phosphate, parathyroid hormone, fibroblast growth factor 23,
rea, and the bacteria-derived toxins p-cresyl sulphate and in-
oxyl sulphate create a vascular milieu characterized by oxida-
ive stress, reduced NO production and a proinflammatory state
110 –112 ]. 

eurotransmitters 
oss of BBB integrity in patients with CKD favours penetration of
raemic toxins and other molecules into the brain parenchyma.
ncreased bacterial metabolism of amino acids such as tryp-
ophan can lead to depletion of this amino acid, which is the
ssential precursor for the synthesis of the neurotransmitters
erotonin and melatonin. In rats with CKD, the bacterial metabo-
ites p-cresyl sulphate, indoxyl sulphate and the tryptophan
etabolites kynurenine, kynurenic acid, 3-hydroxykynurenine,
nthranilic acid, xanthurenic acid, 5-hydroxyindoleacetic acid,
icolinic acid and quinolinic acid increased, while serotonin and
yrosine decreased. Animals should show anxiety-like behaviour
nd cognitive deficits [113 , 114 ]. 
Endocannabinoid-like mediators produced by the host in
anner influenced by bacteria may act on local receptors

hat modulate gut barrier integrity and mediate or counter-
ct some of the adverse effects of a high-fat diet on low-
rade inflammation and the gut barrier [115 ]. Such media-
ors include the endocannabinoids and the N -acyl-serotonins,
hich can also counteract depression-like symptoms in ani-
als [116 ]. Additionally, gut microbiota can also alter the lev-
ls of endocannabinoids and endocannabinoid-like mediators 
n the brain, in a manner predicted to affect mood [117 ].
inally, gut bacteria produce endocannabinoid-like molecules,
uch as the N -acyl-glycines [118 ], which are known to affect the
rain via PPAR α [119 ] or the lysophosphatidylcholine receptor
2A/GPR132 [118 ]. 
euroinflammation/oxidative stress 
raemic toxins such as indoxyl sulfate are neurotoxic [120 ] and
ause systemic and local inflammation [121 ]. Indoxyl sulfate also
auses astrocytosis via stimulation of AhR and neuronal cell
eath [122 ]. Similarly, homocysteine levels increase in CKD due
o reduced folic acid production by colonic bacteria [123 ], and ex-
cerbate neuroinflammation [124 ]. Dysbiosis and loss of intestinal
arrier function causes invasion of bacteria, and local intestinal
nd systemic inflammation that includes increased circulation of
roinflammatory cytokines and LPS that also affect brain [11 ]. 

yelinization 
he first step in the production of 4-ethylphenol (4-EP) from
yrosine is mediated by Bacteroides ovatus . 4-EP is then sulphated
y human metabolism to 4-ethylpheyl-sulfate which can enter
he brain [125 ]. There it reduces synthesis of the myelin sheath
y oligodendrocytes ultimately affecting neuronal function. In
atients with CKD, 4-EP clearance by the kidneys is reduced, and
n mice, elevated levels of 4-EP reduce brain myelination and
ause anxiety and depressive-like behaviour [125 ]. Elevated levels
f 4-EP have also been found in patients with anxiety and autism
126 ]. It remains to be tested whether targeting 4-EP levels can
ffect brain health in people with CKD. 

HE GUT MICROBIOME AS THERAPEUTIC 

ARGET 

ased on the changes in gut microbiome in patients with CKD, the
hanges in gut microbiome–derived metabolites, and established
nd emerging links to brain pathologies, modulation of the gut mi-
robiome is becoming a viable therapeutic target. Next to kidney
eplacement therapies, several and potentially synergistic strate-
ies are plausible but will require controlled clinical trials before
ecoming recommended therapies (Fig. 5 ). 

hysical activity 

hysical activity has been shown to have beneficial effects in cog-
itive decline [127 ] and may act via release of exerkines on brain
s discussed above. Physical activity also modulates the gut mi-
robiome [44 , 128 ]. Most studies in humans are cross-sectional
nd only few longitudinal studies exist. However, exercise is as-
ociated with higher microbiome diversity and higher production
f SCFAs [45 , 128 , 129 ]. No studies have addressed the effect of
xercise on the gut microbiome in patients with CKD to date. 

iet and nutrition 

ietary interventions in patients with CKD traditionally aim to
revent hyperkalemia, overhydration or high phosphate loads
hile providing sufficient protein and other nutrients [130 ]. A re-
ent trial, the Mediterranean–DASH Intervention for Neurodegen-
rative Delay (MIND diet trial) provided no evidence for a benefit
n a non-CKD population at risk for dementia [131 , 132 ]. However,
his population had normal kidney function, had been selected
ased on a family history of dementia and follow-up was only
ver 3 years. No information on gut microbiome was provided. In
ontrast, high adherence to a 1-year Mediterranean diet interven-
ion led to improvement of global cognition and episodic memory
133 , 134 ]. High diet adherence was further associated with spe-
ific microbiome alterations, increased SCFAs and decreased sec-
ndary bile acids and p-cresol production [133 , 134 ]. An ideal diet
or higher gut microbiome diversity and activity needs to contain
ufficient amounts of dietary fibre which not only provides the
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Figure 5: Strategies targeting the gut microbiome to improve cognitive function in patients with CKD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

source for SCFAs production but will also accelerate stool transit
times and has the capacity to bind uraemic toxins. If fibres cannot
be provided in the form of fruits, vegetables, whole grain prod-
ucts, and pulses and nuts, direct supplementation of fibres may
be considered [135 , 136 ]. Accordingly, even a very short period (2
days) of a Mediterranean-like diet, in individuals coming from a
12-day western-like diet, was recently shown to produce effects on
circulating SCFAs and endocannabinoid-like mediators that are
predicted to be beneficial for dysmetabolism and other potential
consequences of gut dysbiosis [137 ]. Moreover, novel potassium
binders may allow for a more liberal diet and even decrease am-
monia absorption and serum urea levels, although their impact
on the gut microbiome is still incompletely understood [138 , 139 ].

Probiotic and prebiotic supplements 
Modulation of the gut microbiota with probiotics (live microor-
ganisms that, when administered in adequate amounts, confer
a health benefit on the host [140 ]), prebiotics (substrates, that are
selectively utilized by host microorganisms conferring a health
benefit [141 ]) or synbiotics (a combination of pro-and prebiotics)
has been studied for prevention or improvement of cognitive de-
cline as well as for correction of kidney disease associated dys-
biosis and uraemic toxin production. Meta-analyses of random-
ized controlled trials testing the impact of probiotics on cognitive
decline found improvement of cognitive functions in participants
with impaired cognition [142 , 143 ]. Fewer studies addressed the
potential of prebiotic supplementation. A recent 12-week inter-
vention with inulin and fructo-oligosaccharides improved cogni-
tive functions in elderly twin pairs [144 ]. 

Pro-, pre- and synbiotic interventions in CKD patients have
been analysed in meta-analyses [145 –149 ]. In general, no improve-
ment of kidney function but lower levels of uraemic toxins (p-
cresol, indoxyl sulphate) and circulating markers of inflamma-
tion (e.g. C-reactive protein, interleukin-6) were reported. Yet, the
impact on uraemic toxins differed between studies, likely reflect- 
ing the heterogeneity of probiotics (strain-specific properties) and 
prebiotics (chemical structures), but also the heterogeneity of par- 
ticipating patients with CKD. Likewise, the few studies that in- 
cluded the effect of biotic interventions on the gut microbiota of 
kidney disease patients found diverging results [150 –154 ]. 

Currently, the impact of pro- or prebiotic interventions on 
uraemic toxins and inflammatory markers looks promising, but 
whether this translates into improvement of CKD-associated cog- 
nitive decline has not been addressed and more evidence from 

currently ongoing trials is needed [29 ]. More recently they were 
also reported to have potentially beneficial effects on brain (and 
kidney) health [70 , 155 ]. 

Fecal microbiota transplantation 

Fecal microbiota transplantation (FMT) has emerged as a treat- 
ment for severe intestinal dysbiosis as in patients with recurrent 
C. difficile infections or patients with inflammatory bowel disease 
[156 , 157 ]. Despite some evidence from animal studies, that trans- 
fer of bacteria from healthy donor animals or humans could have 
beneficial effects on parameters of kidney function, fibrosis and 
inflammation [158 ], no controlled studies have been reported to 
date. A retrospective analysis of patients who underwent FMT 

for treatment of inflammatory bowel disease or functional bowel 
disease suggested that patients with reduced kidney function 
experienced an improvement after FMT [159 ]. FMT is also in early
clinical development for brain protection, although not yet in the 
context of CKD [160 ]. 

SUMMARY AND CONCLUSION 

The gut microbiome communicates with various organs and sys- 
temic functions including the brain and thereby modulates im- 
portant aspects of brain function including brain metabolism,
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ognition, mood and autonomous nerve system outflow. In pa-
ients with CKD, profound changes in the composition of the
ut microbiome occur and likely participate in pathological alter-
tions of brain function. Based on animal data and observational
uman studies, several pathways may be implicated in the decline
f cognitive function. Increasing understanding of which compo-
ents of the gut microbiome are relevant for human health and
ow to manipulate the gut microbiome may provide opportunities
o improve healthcare for patients with CKD and cognitive decline.
ontrolled clinical trials are necessary to test the effectiveness of
argeted interventions to restore microbiome functions and to ex-
mine whether these measures improve kidney function and pre-
ent or even reverse cognitive decline. 
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