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Treatment of patients with chronic kidney disease (CKD)
requires implementation of prevention and management
strategies that reduce the risk of kidney failure and CKD-
associated cardiovascular risk. Metabolic syndrome is
characterized by obesity, high blood pressure,
dyslipidemia, and hyperglycemia, and it is common among
patients with CKD. Large-scale randomized trials have led
to significant advances in the management of CKD, with 5
pharmacotherapies now proven to be nephroprotective
and/or cardioprotective in certain types of patients. Renin-
angiotensin system inhibitors and sodium-glucose
cotransporter 2 inhibitors slow kidney disease progression
and reduce heart failure complications for most patients
with CKD. In addition, statin-based regimens lower low-
density lipoprotein cholesterol and reduce the risk of
atherosclerotic disease (with no clinically meaningful effect
on kidney outcomes). For patients with type 2 diabetes and
albuminuric CKD, the nonsteroidal mineralocorticoid
receptor antagonist finerenone and the glucagon-like
peptide-1 receptor agonist semaglutide also confer
cardiorenal benefits, with semaglutide additionally
effective at reducing weight. Together, these randomized
data strongly suggest that metabolic syndrome mediates
some of the cardiorenal risk observed in CKD. Considered
separately, the trials help elucidate which components of
metabolic syndrome influence the pathophysiology of
kidney disease progression and which separately modify
risk of atherosclerotic and nonatherosclerotic
cardiovascular outcomes. As we predict complementary
and different mechanisms of nephroprotection and
cardioprotection for these different interventions, it seems
logical that they should be deployed together to maximize
benefits. Even when combined, however, these therapies
are not a cure, so further trials remain important to reduce
the residual cardiorenal risks associated with CKD.
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Editor’s Note

Obesity, metabolic syndrome, and diabetes are
commonly associated with chronic kidney dis-
ease (CKD) and cardiovascular disease (CVD).
The management of these patients with high
morbidities and mortality has been challenging.
However, recent clinical trials have shown that
several new classes of medications have both
renal and cardiac protective effects, and some
of them could also induce weight loss and
improve lipid and metabolic profile in this pa-
tient population. In this first mini review of this
series on “Metabolic disorder–associated kid-
ney diseases,” the authors provide an updated
review on the current prevention and treatment
of patients with metabolic dysfunction–
associated CKD and CVD based on the
recently published randomized clinical trials.
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M etabolic syndrome is characterized by a cluster of
interconnected metabolic abnormalities that include
obesity, high blood pressure, dyslipidemia (high

triglycerides and low high-density lipoprotein cholesterol),
and hyperglycemia (Table 1).1–4 The global prevalence of
metabolic syndrome is estimated to be between 13%‒31%
in adults and has increased almost in parallel with the global
obesity epidemic.5,6 There is a strong association of metabolic
syndrome with cardiovascular disease and an increasingly
studied association of metabolic syndrome (and its compo-
nents) with chronic kidney disease (CKD).7,8 Indeed, the
American Heart Association recently proposed the
cardiovascular-kidney-metabolic syndrome and developed
risk prediction equations that highlight the pathophysiolog-
ical interactions of CKD, cardiovascular disease, and
1
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Table 1 | Summary table of 4 key definitions of metabolic syndrome

Definition

Criteria

Requirements Obesity Hypertension Dyslipidemia Hyperglycemia Other

World Health
Organization

19981

InsulinQ22 resistance and
any 2 other criteria

BMI >30 kg/m2 and/or
WHR >0.9 (M), >0.85 (F)

$140/90 mm Hg Triglycerides $150
mg/dla

HDL-C <35
(M), <39 (F)
mg/dl

Evidence of insulin
resistance (e.g.,
impaired glucose
tolerance or type
2 diabetes)

Evidence of
albuminuria (e.g.,
uACR $30 mg/g)

IDF
20052

Central obesity and
any 2 other criteria

Elevated waist
circumference with
ethnicity-specific cut
points

$130/$85
mm Hg or
treatment of
previously
diagnosed
hypertension

Triglycerides $150
mg/dla or
treatment for this
lipid abnormality

HDL-C <40
(M), <50 (F)
mg/dlb or
treatment for
this lipid
abnormality

Fasting glucose $100
mg/dl or previously
diagnosed
diabetes

AHA/NHLBI
20053

Presence of $3 of the
following 5 criteria

Waist circumference $102
(M), $88 (F) cm in
Europids

$130/$85
mm Hg or
treatment of
hypertension

Triglycerides $150
mg/dla or
treatment for this
lipid abnormality

HDL-C <40
(M), <50 (F)
mg/dlb or
treatment for
this lipid
abnormality

Fasting glucose $100
mg/dl or treatment
for elevated
glucose

Harmonized definition
incorporating IDF
and AHA/NHLBI
definitions

20094

Presence of $3 of the
following 5 criteria

Elevated waist
circumference with
population- and
country-specific cut
points

$130/$85
mm Hg or
treatment of
previously
diagnosed
hypertension

Triglycerides $150
mg/dla or
treatment for this
lipid abnormality

HDL-C <40
(M), <50 (F)
mg/dlb or
treatment for
this lipid
abnormality

Fasting glucose $100
mg/dl or treatment
for elevated
glucose

AHA, American Heart Association; BMI, body mass index; Europids, people of European origin; F, female; HDL-C, high-density lipoprotein cholesterol; IDF, International Diabetes Federation; M, male; NHLBI, National Heart, Lung, and
Blood Institute; uACR, urinary albumin-to-creatinine ratio; WHR, waist-to-hip ratio.
aTriglycerides $1.7 mmol/l.
bHDL-C <1.0 (M), <1.3 (F) mmol/l.
Bold and italicized text indicate xxx Q23.
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metabolic risk factors.9,10 Large-scale, high-quality, random-
ized trials in the past decade have led to significant advances
in the management of patients with CKD and help elucidate
which components of metabolic syndrome influence the
pathophysiology of kidney disease progression and cardiovas-
cular outcomes. This review provides an updated overview of
how the components of metabolic syndrome modify the risk
of kidney failure and different types of cardiovascular disease,
focusing on the randomized data.

Risk prediction
Albuminuria is one of the earliest signs of kidney damage, and
there is a steep association between level of albuminuria and
future risk of kidney failure and cardiovascular events.11–13

Despite this knowledge, rates of albuminuria screening in
general are low.14 Clinical practice guidelines recommend
urine albumin-to-creatinine ratio measurements alongside
estimated glomerular filtration rate (eGFR) as part of the
routine assessment of patients with metabolic syndrome to
enable health care professionals to recognize onset of kidney
disease early, and quantify risk of kidney failure once diag-
nosed with CKD.13 Moreover, the indications for some risk-
modifying therapies are currently restricted to patients with
type 2 diabetes and CKD with evidence of albuminuria
(finerenone and semaglutide).

The Kidney Disease: Improving Global Outcomes
(KDIGO) heat map risk stratification of CKD reinforces the
importance to health professionals of using both eGFR and
urine albumin-to-creatinine ratio for assessing severity and
prognosis of CKD at a population level but does not enable
individual risk prediction.13 Several risk prediction tools have
been developed for patients with CKD that allow health care
professionals to estimate absolute risk for individuals and for
specific outcomes. The kidney failure risk equation is a risk
prediction tool for the progression of CKD stage 3 to 5 to
kidney failure in the next 2 or 5 years.15 Although the kidney
failure risk equation was not specifically developed for pa-
tients with metabolic syndrome (and does not include the
components of metabolic syndrome as variables), the models
have been extensively validated in diverse populations with
CKD stages 3 to 5, including patients with metabolic syn-
drome.16,17 Patients with metabolic syndrome and CKD
stages 1 to 2 may be at risk of rapid progression but low risk
of kidney failure in the next 5 years, and alternative risk
prediction equations have been developed for predicting
progression (e.g., based on $40% eGFR decline).18

To complement the kidney outcome risk prediction tools,
the cardiovascular-kidney-metabolic staging construct in-
corporates the KDIGO heat map and reflects the spectrum of
cardiovascular risk.9,10 PREVENT are risk prediction equa-
tions that enable 10- and 30-year risk estimates for total
cardiovascular disease and include eGFR as a predictor with
an option to add urine albumin-to-creatinine ratio.19 The
particular inclusion of heart failure risk alongside athero-
sclerotic cardiovascular disease means this is a useful new tool
to facilitate identification of those at increased cardiovascular
SSU 5.7.0 DTD � KINT4131_proof �
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risk in CKD, where heart failure and structural heart disease
are increasingly prevalent as eGFR decreases.20

Excess adiposity
Measures of adiposity (body mass index, waist-to-hip ratio,
and waist circumference) have been positively associated with
risk of CKD.21,22 Genetic analyses suggest that the effect of
increased adiposity on CKD risk is largely causal and partially
mediated by diabetes and blood pressure (BP).23 However,
other mechanisms not linked to diabetes or BP could still be
responsible for some of the adiposity-CKD associated risk.
KDIGO recommends patients with CKD to achieve an
optimal body mass index and undertake physical activity
compatible with cardiovascular health, tolerance, and level of
frailty.13 This seems reasonable given that physical inactivity is
a modifiable risk factor for cardiovascular disease and mor-
tality in the general population, and regular exercise training
is associated with improved health outcomes in individuals
with CKD.24,25 Moreover, the Look AHEAD trial demon-
strated that an intensive lifestyle intervention (compared with
diabetes support and education) reduced the incidence of
very-high-risk CKD by 31% over a median of 9.6 years in
5145 overweight and obese patients with diabetes.26 This was
partially attributable to reductions in hemoglobin A1c, weight,
and BP, with a 1.6 (range, 1.1–2.0) mm Hg reduction in
systolic BP per 1-kg/m2 decrease in body mass index.27,28

Recently, glucagon-like peptide-1 receptor agonists (GLP-
1RAs) have revolutionized the management of excess
adiposity.29 GLP-1 receptor stimulation increases glucose-
dependent insulin secretion, decreases inappropriate
glucagon secretion, decelerates gastric emptying, and in-
creases satiety while decreasing prospective food consump-
tion. The SELECT Qtrial demonstrated that allocation to the
high “weight-loss dose” of semaglutide (2.4 mg weekly s.c.)
versus placebo over 2.8 years led to a 20% reduction in its
primary cardiovascular composite outcome (hazard ratio
[HR], 0.80; 95% confidence interval [CI], 0.72–0.90) in
17,604 patients who are overweight or obese with preexisting
cardiovascular disease, but without diabetes.30 In addition to
the benefit on risk of recurrent atherosclerotic disease, there
was an 18% reduction in risk of a heart failure composite
outcome (HR, 0.82; 95% CI, 0.71–0.96). Subanalyses of
SELECT also suggest possible renoprotection in this popula-
tion, with a lower incidence of a composite kidney outcome
with semaglutide versus placebo (1.8% versus 2.4%; HR, 0.78;
95% CI, 0.63–0.96).31 To complement this, the FLOW Qtrial
demonstrated that allocation to the lower “glycemic control
dose” of semaglutide (1.0 mg weekly s.c.) versus placebo over
3.4 years led to a 24% lower risk of major kidney disease
events or death from kidney-related or cardiovascular causes
(HR, 0.76; 95% CI, 0.66–0.88) in 3533 patients with type 2
diabetes and CKD with albuminuria.32 Gastrointestinal
adverse effects do lead to permanent discontinuation of
semaglutide in a minority of patients (the absolute excess was
8.0% in SELECT and 3.4% in FLOW), but the safety data
from large trials provide considerable reassurance on use of
5 March 2025 � 8:28 pm � ce
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GLP-1RAs in overweight/obese patients with type 2 diabetes
and CKD.30,32 Taken altogether, there is now substantial ev-
idence that the GLP-1RA semaglutide should be implemented
alongside other first-line treatments for patients overweight
with preexisting cardiovascular disease, and for patients with
type 2 diabetes and CKD with albuminuria.

BP and the renin-angiotensin-aldosterone system
Accelerated phase hypertension can cause severe kidney
injury, but the extent to which moderate increases in BP affect
kidney outcomes is unclear. Studies have not been able to
disentangle the complex interrelationship and establish
definitively if the increase in BP caused by CKD creates a
vicious cycle of further declines in kidney function.33 Genetic
association studies have yielded conflicting results regarding
the causal relationship between high BP and kidney out-
comes.34,35 Furthermore, meta-analyses of intensive versus
standard BP-lowering trials that tested an average BP differ-
ence of z7 mm Hg (down to 130 mm Hg) revealed no clear
benefit on kidney outcomes.36,37

There is a well-documented log-linear relationship be-
tween higher BP and increased cardiovascular mortality in
apparently healthy adults, without evidence of a threshold
down to at least 115/75 mm Hg.38 The SPRINT trial showed
that a systolic BP target of <120 mm Hg (compared with a
target of <140 mm Hg) reduced the risk of major adverse
cardiovascular events by 25% (HR, 0.75; 95% CI, 0.64–0.89)
in 9361 patients with a systolic BP of $130 mm Hg and an
increased cardiovascular risk, but without diabetes.39 There
was no difference in the main kidney outcome between the 2
randomized groups in the participants with CKD at baseline,
perhaps not surprising given the relatively mild CKD with a
low risk of progression (66% had a baseline eGFR $45 ml/
min per 1.73 m2) in the selected population.40 However, the
relative cardiovascular benefits were similar in people with
and without CKD, and although the SPRINT trial excluded
patients with diabetes, the cardiovascular benefits of BP
lowering (particularly the reduced risk of stroke) are apparent
in patients with diabetes in meta-analysis of intensive versus
standard BP-lowering trials.41,42 KDIGO therefore recom-
mends targeting a systolic BP to <120 mm Hg, when toler-
ated, using standardized office BP measurement (with
recommended preparation procedures to ensure the patient is
relaxed) to reduce cardiovascular risk in patients with CKD.43

Routine office BP measurements (without preparation pro-
cedures) are generally higher, and their sole use could lead to
a higher incidence of hypotension-related adverse events
when an intensive strategy is implemented.

The renin-angiotensin-aldosterone system has a key role in
the development of high BP and has been implicated in the
etiology of obesity, dyslipidemia, and insulin resistance, sug-
gesting it could be a common thread linking the components
within metabolic syndrome.44 In addition to reducing BP,
renin-angiotensin system inhibitors (RASis) reduce the risk of
kidney failure in patients with diabetes and albuminuria, with
some evidence of renoprotection in patients with proteinuric
SSU 5.7.0 DTD � KINT4131_proof �
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nondiabetic kidney diseases.45–47 KDIGO recommends RASi
treatment for patients with CKD and moderate-to-severe
albuminuria and patients with CKD and normal-to-mild
albuminuria with specific indications (e.g., to treat hyper-
tension or heart failure with reduced ejection fraction).13

Aldosterone acts downstream of the RAS, forming the last
effector of the renin-angiotensin-aldosterone system, and has
profibrotic and inflammatory effects in the heart, vasculature,
and kidney.48 Although patients taking RASis are partially
protected against increased aldosterone levels, chronic use of
them can still result in mineralocorticoid receptor over-
activation because of an incomplete suppression of serum
aldosterone (i.e., aldosterone breakthrough).49 Targeting re-
sidual aldosterone overactivity is desirable and has led to the
development of nonsteroidal mineralocorticoid receptor an-
tagonists (nsMRAs) and, more recently, aldosterone synthase
inhibitors (ASis). For patients with type 2 diabetes and CKD
with albuminuria, the nsMRA finerenone has been shown in
2 large trials (FIDELIO-DKD [Finerenone Qin Reducing Kid-
ney Failure and Disease Progression in Diabetic Kidney Dis-
ease] and FIGARO-DKD [Finerenone in Reducing
Cardiovascular Mortality and Morbidity in Diabetic Kidney
Disease]) to confer reductions in cardiorenal risk when taken
in addition to RASis. In pooled analyses of these trials with
the FINEARTS-HF Qtrial conducted in patients with heart
failure with preserved ejection fraction, finerenone was shown
to reduce the composite kidney outcome by 20% (HR, 0.80;
95% CI, 0.72–0.90) and the risk of hospitalization from heart
failure by 17% (HR, 0.83; 95% CI, 0.75–0.92) in 18,991
participants over 2.9 years.50 Both nsMRAs and ASis increase
serum potassium levels, and findings from currently reported
finerenone and ASi trials have limited their generalizability
because of a serum potassium screening visit eligibility cri-
terion requiring potassium of #4.8 mmol/l. Ongoing and
future large trials will help determine if nsMRAs and ASis can
also offer kidney and cardiovascular benefits for patients with
nondiabetic kidney disease and those without significant
albuminuria.51–53

Lipid-modifying treatments
In patients with CKD, dyslipidemia is a common complica-
tion, and the lipid abnormalities mirror that of metabolic
syndrome: high triglycerides, low high-density lipoprotein
cholesterol, and an increased proportion of low-density li-
poprotein particles that are small and oxidized.54 However,
among 6245 participants with CKD not on dialysis at
randomization, lowering low-density lipoprotein cholesterol
(LDL-C) by 0.96 mmol/l with simvastatin, 20 mg, and eze-
timibe, 10 mg, for 5 years had no significant effect on the
progression of kidney disease.55 There was no excess risk of
hepatitis, gallstones, or cancer, and the excess risk of myop-
athy was only 2 per 10,000 patients with CKD per year of this
statin-based treatment.56 Although lowering LDL-C using
statin-based therapies has no clinically meaningful effect on
risk of kidney failure, the beneficial effects on the risk of
atherosclerotic cardiovascular disease are well established in
5 March 2025 � 8:28 pm � ce
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Figure 1 | Effect of sodium-glucose cotransporter-2 inhibition (SGLT2i) on kidney failure by diabetes status in the 4 dedicated
chronic kidney disease trials. Kidney failure, defined as composite of sustained estimated glomerular filtration rate (eGFR) <15 ml/min per
1.73 m2 (or eGFR <10 ml/min per 1.73 m2 in EMPA-KIDNEY [The Study of Heart and Kidney Protection With Empagliflozin Q17Q18]), maintenance
dialysis, or kidney transplantation. Data for kidney failure not available for SCORED Q19. Adapted from The Lancet, Volume 400, Issue 10365, The
Nuffield Department of Population Health Renal Studies Group, SGLT2 inhibitor Meta-Analysis Cardio-Renal Trialists’ Consortium, Impact of
diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-
controlled trials, pages 1788–1801.68 ª 2022 The Author(s). Published by Elsevier Ltd. under the terms of a Creative Commons CC-BY license,
http://creativecommons.org/licenses/by/4.0/. CI Q20, confidence interval; CREDENCE, Canagliflozin and Renal Events in Diabetes with Established
Nephropathy Clinical Evaluation; DAPA-CKD, Dapagliflozin and Prevention of Adverse Outcomes in Chronic Kidney Disease.
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people with and without CKD.57 Therefore, KDIGO recom-
mends statin-based regimens for patients with CKD not
treated with dialysis or kidney transplantation if aged $50
years or 18 to 49 years and at risk of atherosclerotic cardio-
vascular disease.13,58

The proportional benefits of lowering LDL-C are deter-
mined by the absolute LDL-C reduction, and so in CKD, the
data suggest we should aim to maximize the reduction in
LDL-C. Proprotein convertase subtilisin kexin 9 inhibitors are
a promising alternative or additional LDL-C–lowering ther-
apy to statins with the potential to provide further reductions
in risk of atherosclerotic cardiovascular disease for patients
with mild-moderate CKD.59,60 In addition, bempedoic acid
also lowers LDL-C and is associated with a reduced risk of
major cardiovascular events among statin-intolerant patients,
including those with mild-moderate CKD.61,62 Currently,
there is no evidence that high-density lipoprotein cholesterol–
increasing pharmacotherapies and insufficient evidence that
triglyceride-lowering (e.g., fibrates) pharmacotherapies
improve clinical outcomes in patients with CKD.58

Glycemic targets and modifying glucose metabolism
KDIGO recommends that patients with CKD and diabetes
should have an individualized hemoglobin A1c target ranging
from <6.5% to <8.0%, with higher targets in those with a
SSU 5.7.0 DTD � KINT4131_proof �
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high risk of hypoglycemia.13,63 The effect of more intensive
glycemic control compared with less intensive glycemic con-
trol on the risk of kidney failure is uncertain, but such an
approach reduces risk of developing or worsening of diabetic
nephropathy based on measures of albuminuria.64–66 More
intensive glycemic control in patients with type 2 diabetes is
also associated with a reduced risk of progression of reti-
nopathy and perhaps may modestly reduce risk of athero-
sclerotic cardiovascular events (but not heart failure).64,67

The notable kidney and cardiovascular protective effects of
sodium-glucose cotransporter-2 inhibitors (SGLT2is) mean
that these agents should be prioritized in patients with CKD
irrespective of diabetes status, glycemic control, or level of
albuminuria. A meta-analysis of all of the 13 large SGLT2i
randomized control trials included 90,413 participants and
demonstrated that the proportional benefits on a standard-
ized kidney disease progression outcome were large (HR,
0.63; 95% CI, 0.58–0.69). In the 3 dedicated CKD progression
trials, SGLT2 inhibition reduced the risk of kidney failure by
34% (HR, 0.66; 95% CI, 0.56–0.77) compared with placebo
(Figure 1).68 QThere were also significant effects on risk of
nonatherosclerotic cardiovascular outcomes, with a 23%
reduction in the risk of the composite outcome of cardio-
vascular death or hospitalization for heart failure (HR, 0.77;
95% CI, 0.74–0.81). These cardiorenal benefits were similar
5 March 2025 � 8:28 pm � ce
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Figure 2 | Proposed updates of 2024 Kidney Disease: Improving Global Outcomes (KDIGO) chronic kidney disease (CKD)
management guideline following results of FLOW Q21. We suggest the glucagon-like peptide-1 receptor agonist (GLP-1RA) semaglutide should
be considered (in addition to the nonsteroidal mineralocorticoid receptor antagonist [nsMRA] finerenone) alongside other first-line drug
therapies for patients with type 2 diabetes and albuminuria.32 In addition, GLP-1RAs should be a first choice consideration to manage
hyperglycemia. ASCVD, atherosclerotic cardiovascular disease; BP, blood pressure; CCB, calcium channel blocker; eGFR, estimated glomerular
filtration rate; MBD, mineral and bone disorder; MRA, mineralocorticoid receptor antagonist; PCSK9i, proprotein convertase subtilisin/kexin
type 9 inhibitor; RASi, renin-angiotensin system inhibitor; SBP, systolic blood pressure; SGLT2i, sodium-glucose cotransporter 2 inhibitor.
Adapted from Kidney International, Volume 105, Issue 4S, Kidney Disease: Improving Global Outcomes (KDIGO) CKD Working Group, KDIGO
2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease, Chapter 3: Delaying CKD progression and
managing its complications, pages S117–S314,.13 Copyright ª 2023 Kidney Disease: Improving Global Outcomes (KDIGO). Published by
Elsevier Inc. on behalf of the International Society of Nephrology under the terms of a Creative Commons CC-BY-NC-ND License, https://
creativecommons.org/licenses/by-nc-nd/4.0/.
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across different categories of CKD causes, and in patients with
and without diabetes.68,69 In the studied populations, SGLT2
inhibition was associated with approximately an 8% increased
risk of urinary tract infections and 4 times increased risk of
mycotic genital infections.68 However, overall, the absolute
benefits of SGLT2 inhibition substantially outweigh serious
hazards, and risk of ketoacidosis and lower limb amputation
are particularly low in patients without diabetes status.
Importantly, 254 participants in the EMPA-KIDNEY (The
Study of Heart and Kidney Protection With Empagliflozin)
trial had an eGFR of 15 to 20 ml/min per 1.73 m2 at
randomization, and the benefits on the primary cardiorenal
composite outcome did not appear to attenuate even as
kidney failure approached.68 KDIGO recommends treating
patients with CKD and type 2 diabetes or heart failure with an
SGLT2i down to at least an eGFR of 20 ml/min per 1.73 m2

with continued use until the need for kidney replacement
therapy (despite low eGFR substantially attenuating their
hemoglobin A1c–lowering effect).13

SGLT2is reduce plasma glucose by enhancing urinary
excretion of glucose and have intermediate glycemic efficacy,
with lower glycemic efficacy when eGFR is decreased. As their
glucose-lowering effect is modest in CKD, other treatments
should be considered to meet individualized glycemic targets
in those with low eGFR.70 The benefits of GLP-1RA therapy
have been discussed earlier. KDIGO recommendations for
SSU 5.7.0 DTD � KINT4131_proof �
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GLP-1RA use predate the FLOW trial results. On the basis of
FLOW, we consider semaglutide to be a first-line treatment,
alongside RASis, statin-based therapy, and SGLT2is, in pa-
tients with albuminuric CKD and type 2 diabetes (Figure 2).

Inflammation
An important hallmark of metabolic syndrome is chronic
low-grade inflammation characterized by the production of
inflammatory cytokines and reactive oxygen species.71 Trials
of colchicine and more complex anti-inflammatory agents
suggest that reducing inflammation modifies the risk of car-
diovascular disease.72–74 Ongoing studies (such as the ZEUS Q

trial of ziltivekimab) are investigating whether targeting in-
flammatory pathways can provide additional benefit on
atherosclerotic cardiovascular risk, as well as other cardiorenal
outcomes.75

Implementation
KDIGO recommends treatment with an RASi, statin-based
therapy, and SGLT2i for most patients with CKD to provide
kidney and cardiovascular protection.13 In patients with type
2 diabetes and albuminuric CKD, finerenone and semaglutide
also offer additional cardiorenal benefits and should be
implemented alongside other first-line therapies. These 5
drug classes are postulated to have different but comple-
mentary mechanisms of action, and the cardiorenal benefits
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Kidney International (2025) -, -–-

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


Q12

Q24

Q13

Q14

D Zhu et al.: Management of CKD among patients with metabolic syndrome m in i r ev i ew

667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722

723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
of SGLT2is are consistent regardless of background use of
nsMRA or GLP-1RA, and vice versa.76,77 There may be other
features of their effects, which means they are tolerated well in
combination. For example, the reduced risk of serious
hyperkalemia conferred by SGLT2 inhibition could counteract
hyperkalemia caused by RASis, nsMRAs, and ASis.78,79

Therefore, combined use of risk-modifying therapies should
be implemented for patients with CKD promptly, where
tolerated, to optimize cardiovascular-kidney-metabolic
health. If such treatment is discontinued during hospital
admission, then particular attention to restarting treatment
after discharge is needed as reported reinitiation rates are low
and beneficial carryover effects are only short lived.80,81 Co-
ordination and collaboration with other specialties and pri-
mary care physicians harmonizes clinical management by
reducing disparities and promotes effective implementation
by reducing clinician inertia.82

Summary
There is a high growing burden of metabolic syndrome
globally, and it is common among patients with CKD. Early
detection of CKD and awareness of the different risk-
modifying therapies will reduce the burden of kidney failure
and CKD-associated cardiovascular disease. A key consider-
ation moving forward is when and how to deploy an
increasing array of pharmacotherapies with multisystem ef-
fects that slow kidney disease progression, offer car-
dioprotection, and/or improve metabolic control. For patients
with type 2 diabetes and albuminuric CKD (many of whom
will have features of metabolic syndrome), there are now 5
evidence-based therapies (RASis, statin-based therapy,
SGLT2is, finerenone, and semaglutide) that improve
cardiovascular-kidney-metabolic health. A holistic approach,
integrating these therapies with early detection strategies, is
essential to effectively reduce the cardiorenal risk of CKD
among patients with metabolic syndrome, while ongoing and
future trials identify further methods to reduce the burden of
disease in this high-risk population.
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