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Abstract
Extracorporeal circuits used in renal replacement therapy (RRT) can develop thrombosis, leading to downtimes and reduced 
therapy efficiency. To prevent this, anticoagulation is used, but the optimal anticoagulant has not yet been identified. Heparin 
is the most widely used anticoagulant in RRT, but it has limitations, such as unpredictable pharmacokinetics, nonspecific 
binding to plasma proteins and cells, and the possibility of suboptimal anticoagulation or bleeding complications, specifi-
cally in critically ill patients with acute renal failure who are already at high risk of bleeding. Citrate anticoagulation is a 
better alternative, being considered a standard for continuous renal replacement therapy, since it is associated with a lower 
risk of bleeding complications and better efficacy, even in patients with acute renal failure or liver disease. The aim of this 
article is to provide an updated review of the different strategies of anticoagulation in renal replacement therapies that can 
be implemented in critical scenarios, focusing on the advantages and disadvantages of each one and the beneficial aspects 
of using citrate over heparin in critical ill patients.
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Introduction

Under physiological conditions, linear blood flow through 
healthy endothelium prevents activation of the coagula-
tion cascade. However, in the extracorporeal hemodialysis 
circuit, there are different factors that influence the devel-
opment of hemoconcentration, protein polarization and 
thrombotic phenomena, such as dialyzer biocompatibility, 
blood flow rate, and filtration fraction [1]. Clotting of the 
extracorporeal circuit impacts negatively on the therapy pre-
scribed, representing a quarter of causes for stopping renal 
replacement therapies and consequently affecting patient-
related outcomes [2].

After the interaction of the blood with the extracorporeal 
material occurs a progressive process of protein adsorption 

to the surface, with the consequent deposit of fibrinogen and 
other proteins such as coagulation factors, lipoproteins, albu-
min, and immunoglobulins [3, 4]. Factor XII is one of the 
main players involved, since it triggers thrombin synthesis 
and complement activation, generating a crosstalk between 
both systems and amplifying thrombin generation. The phe-
nomenon of protein polarization also produces adherence 
of red blood cells, platelets, and inflammatory cells to the 
membrane, decreasing the efficiency of the dialysis mem-
brane [5].

Additionally, critically ill patients and those with acute 
kidney injury may develop a prothrombotic state, secondary 
to the expression of tissue factor in endothelial and mono-
nuclear cells, a decrease in natural anticoagulants, and inhi-
bition of fibrinolysis [6], further contributing to decreased 
survival of the extracorporeal circuit.

In the previously mentioned factors lies the importance 
of the existence, implementation and reviewing the different 
methods existing to prevent thrombosis of extracorporeal 
circuits. This is essential, since circuit coagulation is the 
main cause of downtimes and stopping of renal replace-
ment therapies, causing the patient to receive a lower dose 
of therapy in relation to the initially prescribed dose [2, 7, 8]. 
Multiple studies have been conducted to evaluate the effect 
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and safety of citrate versus heparin anticoagulation in criti-
cal patients receiving renal replacement therapies with the 
purpose of stablishing the best method to prolong the circuit 
life and though achieving the prescribed dose of therapy. 
Despite extensive literature of existing measures to prevent 
thrombosis of extracorporeal circuits, there remains a gap in 
our understanding of the most effective and safe anticoagu-
lation strategies. This is fundamental in order to prescribe 
more targeted therapies and eventually optimize important 
patient outcomes like survival, length of stay, or medical 
complications (Table 1).

The objectives of this review are: (1) to describe and 
summarize the current strategies to prevent clotting of 
extracorporeal circuits, (2) to compare the advantages and 
disadvantages of heparin and citrate as anticoagulants in 
renal replacement therapies in critical ill patients, and (3) to 
discuss the potential benefits of citrate use in this scenario.

Measures to maintain the patency 
of the extracorporeal circuit

Strategies to achieve patency of the extracorporeal circuit 
are divided into non-pharmacological and pharmacological. 
Within the latter, there are systemic and regional protocols 
of anticoagulation [7].

Non‑pharmacological

The presence of a properly functioning vascular access will 
prevent the development of out-of-range pressures, which 
generate a decrease in blood flow with the risk of coag-
ulation of the circuit secondary to stasis and an increase 
in the filtration fraction. An adequate blood flow rate and 
ultrafiltration percentage will generate an optimal filtration 
fraction (< 25%) that will prevent hemoconcentration within 
the circuit. The priming of the circuit, which decreases the 
air–blood interface, and the rapid reaction to the appearance 
of alarms to avoid blood stasis are other important factors 
to apply [7, 9]. Although there is no high-quality evidence 
to support their use [10], they should be applied to all types 
of extracorporeal therapy, regardless of the type and use of 
anticoagulation.

Pharmacological

Anticoagulation reduces the risk of clotting in the circuit, 
increasing its survival and the effectiveness of renal replace-
ment therapy. An optimal anticoagulant must deliver maxi-
mum anti-thrombotic activity with minimal risk of bleeding 
complications and negligible systemic effects. Additionally, 
it should be affordable, have a short half-life, and be simple 
to reverse. Furthermore, monitoring the anticoagulant effect 

must be straightforward and easily accessible. Although the 
ideal anticoagulant does not exist, the most widely used 
strategies in current clinical practice are systemic (heparins, 
thrombin antagonists, heparinoids, and platelet inhibitors) 
and regional (citrate and heparin–protamine) [11]. Both 
strategies include the use of heparin; however, several stud-
ies have shown superiority of regional citrate anticoagula-
tion in terms of effective dose delivered, filter survival, and 
risk of major and minor bleeding [12–20], and continuous 
renal replacement therapy (CRRT) is currently the method 
of choice suggested by KDIGO [21]. Despite all this, the 
most widely used anticoagulant continues to be heparin [22].

How does heparin work and why should it 
be avoided in critical ill patients?

Unfractionated heparin (UFH) is a heterogeneous mixture of 
negatively charged sulfated glycosaminoglycans, which exert 
their anticoagulant action mainly through their interaction 
with antithrombin (AT), generating a conformational change 
in their structure, increasing, and accelerating their capacity 
to inactivate thrombin, activated factor X, and activated fac-
tor IX. The therapeutic goals for treatment with UFH are an 
aPTT of 45–60 s or anti-Xa activity levels 0.3–0.6 IU/mL 
(Fig. 1). Monitoring for LMWH is through anti-Xa activity 
(anti-Xa), with target levels of 0.25–0.35 IU/mL [11].

Since UFH is affordable and considered safe for repeated 
use, it is the most widely used anticoagulant in renal replace-
ment therapies. It has a rapid onset of action (3–5 min) and 
short half-life (1 h) and is predominantly cleared by hepatic 
and vascular endothelial heparinases, but given their con-
formational characteristics, it binds non-specifically to 
other plasma proteins (platelet factor 4, fibronectin, and von 
Willebrand factor), as well as leukocytes, macrophages, and 
endothelial cells affecting its half-life and bioavailability, 
making it difficult to predict their effect, which is why they 
require close monitoring with aPTT [23, 24] (Fig. 2).

Low molecular weight heparin (LMWH) was imple-
mented in general clinical practice given its better risk–ben-
efit profile and pharmacokinetic properties (mainly longer 
half-life and better prediction of its therapeutic effect). It 
presents less binding to plasmatic and cellular proteins, less 
capacity to inactivate thrombin, but maintaining its capacity 
to inactivate factor X. Its monitoring is usually only neces-
sary in clinical situations such as morbid obesity and renal 
failure, through anti-Xa levels, which are not widely avail-
able [25]. Regardless of this, LMWH was associated with 
a higher incidence of bleeding complications (11.4%) com-
pared to UFH (2.3%) and citrate (2.0%) in CRRT (20), and 
there are insufficient data to support its use.

It is important to consider that in critical ill patients, there 
may be resistance to the action of heparin, secondary to the 
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decrease in circulating levels of antithrombin III, both due 
to decreased synthesis and increased hepatic clearance, and 
to receptor antagonism by elastase of neutrophils [26].

At higher anticoagulation levels, filter survival increases; 
however, hemorrhagic events increase proportionally, being 
the most frequent those associated with vascular accesses 
and respiratory mucosa [27]. Heparin-induced thrombocy-
topenia is a rare complication (it is described an 3–5% inci-
dence in cardiac surgery studies), but potentially serious. It 
occurs 5 to 14 days after the start of the drug and can cause 
venous and/or arterial thrombotic events. Its diagnosis can 
be difficult in critical ill patients given the high prevalence 
of thrombocytopenia secondary to various causes, requiring 
early suspicion to discontinue its use and initiate an alterna-
tive anticoagulant at a therapeutic dose to avoid massive 
thrombin generation and serious complications [28, 29].

The binding of heparin to AT has been shown to potenti-
ate its anticoagulant effects. However, this interaction may 
also inhibit the anti-inflammatory actions of AT (Fig. 3). 

These anti-inflammatory effects of AT are mediated by its 
binding to glycosaminoglycans on endothelial membranes, 
leading to enhanced formation of prostacyclin [30]. In 
patients with sepsis or undergoing ischemia reperfusion, 
the levels of elastase are known to increase. Recent studies 
suggest that heparin, which normally potentiates AT, may 
inactivate AT in the presence of elastase. This process can 
lead to proinflammatory and procoagulant effects on the 
endothelium in sepsis, which can compromise the microcir-
culation and threaten tissue perfusion [31].

Another systemic effects of heparin that are described 
in the literature are hypertriglyceridemia and osteoporosis. 
Heparin has been shown to deplete lipoprotein lipase, reduc-
ing triglyceride clearance by liver and endothelium, leading 
to hypertriglyceridemia [32]. In relation to osteoporosis, its 
effect was studied in patients on hemodialysis, who presented 
elevated levels of tartrate-resistant acid phosphatase, reflecting 
increased osteoclastic activity and risk of osteoporosis, which 
decreased when rotating to LMWH [33]. Experiments in rats 

Fig. 1  Heparin resistance in 
critical ill patients. UFH is gen-
erally administered as a bolus 
of 2000–5000 IU (30 IU/kg), 
followed by a continuous infu-
sion of 400–700 IU/h (5–10 IU/
kg/hour) into the arterial limb of 
the RRT circuit. aPTT is main-
tained between 34–45 s or an 
aPTT of 1.5–2.0 times normal

Fig. 2  Heparin resistance in critical ill patients. Heparin-binding 
proteins, including acute-phase reactants like platelet factor-4 (FP-
4), histidine-rich glycoprotein (HRD), vitronectin, fibronectin, and 
lipopolysaccharide-binding protein (LPS-BP), are released from 
endothelial stores in critically ill patients, and their levels increase in 
sepsis and other forms of inflammation. Heparin has a strong affin-

ity for apoptotic and necrotic cells, specifically to discrete domains 
released from the nucleus onto the membrane as the cell dies. The 
heparin-binding sites on apoptotic cells also signal phagocytic clear-
ance, and thus, heparin may delay such clearance. The affinity of dead 
cells decreases with heparins of lower molecular weight
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have shown that heparin accumulates in bone tissue, meaning 
that its effect is not fully reversible [34].

To avoid all systemic adverse effects of heparin, regional 
anticoagulation protocols with heparin have been imple-
mented. The neutralization of heparin with protamine has 
been studied mainly in cardiac surgery. This is a cationic 
peptide that neutralizes the effect of heparin by electrostatic 
binding between its positively charged arginine groups with 
the negatively charged heparin molecule. The heparin–pro-
tamine complexes are formed in a 1:1 ratio, allowing its pro-
gressive release from antithrombin III and thus inactivating 
the action of heparin [35] (Fig. 4).

The dosage is based on protamine–heparin ratios, and 
there are studies that compare the administration of prota-
mine in a ratio of 0.8, evidencing adverse effects (coagu-
lopathy, bleeding, and need for transfusions) associated 
with higher ratios [36–38]. Protamine can cause severe ana-
phylactic reactions with vasoconstriction of the lung terri-
tory, secondary to the formation of IgG and IgE antibodies. 
Hypotension secondary to vasoplegia, thrombocytopenia, 
and complement activation has also been described [35]. 
Given this background, other protocols with fewer systemic 
adverse effects have been developed to generate regional 
anticoagulation.

Why is citrate a better option?

Citrate is a small (298 Dalton) water-soluble organic acid 
that is used in two forms: sodium citrate and dextrose cit-
rate [39]. Its anticoagulant properties are secondary to 

its great affinity for divalent ionic calcium, forming cit-
rate–calcium complexes in the blood, and thus decreasing 
the levels of ionic calcium (Fig. 5). Calcium is the most 
important cofactor of the enzymatic reactions of the coag-
ulation cascade, so when its ionic form is at levels lower 
than 0.25–0.33 mmol/L, a significant anticoagulant effect is 
generated, and this is achieved with a citrate concentration 
of 3 to 5 mmoL per liter of blood [40, 41]. Therefore, most 
protocols aim to deliver this fixed concentration of citrate 
into the pre-filter blood line by coupling the citrate pump 
with the blood flow pump; thus, if less citrate is desired, it is 
sufficient to decrease the blood flow. Likewise, if the therapy 
is CVVHD or CVVHDF, increasing the dialysate will favor 
a greater elimination of citrate–calcium complexes. In this 
way, strict control of metabolic load can be maintained.

Its metabolism occurs in the liver, muscle, and kidney, 
entering the Krebs cycle (tricarboxylic acid cycle) (Fig. 6) 
and generating three molecules of sodium bicarbonate per 
citrate molecule and 593 cal per mmol/citrate [42, 43]. If 
this process occurs normally, plasma alkalinization is gener-
ated, an effect which could be beneficial for metabolic aci-
dosis secondary to acute kidney injury. Metabolic capacity 
is saturable and may be reduced in situations of liver failure 
[44], hypoperfusion states with decreased oxygen delivery 
for proper functioning of the Krebs cycle, and intoxications 
that generate mitochondrial blockade, such as biguanides, 
paracetamol, and propofol [45]. The previously described 
situations should not be an absolute contraindication for the 
use of regional anticoagulation with citrate, but rather should 
be an indication for stricter monitoring [46]. An exception 
is the presence of rhabdomyolysis added to liver or kidney 

Fig. 3  Proinflammatory effects of heparin. Antithrombin III (AT-III) binding to glucosaminoglycans on endothelial membranes enhances the 
formation of prostacyclin (PGI2) and heparin binding to AT abolishes this effect
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failure, which will generate a significant decrease in mus-
cle citrate clearance and a high risk of accumulation [47]. 
Since the above situations are generally associated with high 
lactate levels, both a high level at the start of therapy or a 
progressive increase could be a predictive indicator of cit-
rate intolerance, as well as a decrease in prothrombin time 
[48, 49].

Regional anticoagulation with citrate was began to be 
used in the early 1990s. There are numerous protocols for 
its implementation, which have in common the administra-
tion of a pre-filter citrate solution, coupled to the rate of 
blood flow, in order to achieve the desired concentration 

of 3–5 mmol per liter of blood (Fig. 7). The use of con-
centrated citrate is preferred for purely diffusive therapies, 
combining it with dialysis solutions with lower sodium 
and bicarbonate concentrations to avoid adverse hydro-
electrolytic and acid–base effects [50]. Diluted citrate is 
mainly used in convective therapies, acting as predilution 
replacement fluid [45].

Monitoring of regional citrate should be done with dif-
ferent targets. Post-filter ionic calcium measurement is 
used to monitor an adequate degree of circuit anticoagu-
lation, with goals of 0.2–0.35 mmol/L [39]. In parallel, 
a systemic ionic calcium measurement should be per-
formed since citrate–calcium complexes are eliminated 
through the dialyzer in a variable proportion depending 
on the technique (30–60%) and administer intravenous cal-
cium in order to maintain normal serum levels and thus 
avoid adverse effects secondary to hypocalcaemia [39]. 
Generally, dialysis and substitution solutions do not con-
tent calcium, since this way less citrate is used, which is 
intended only to chelate calcium from the blood. Addition-
ally, in diffusive therapies (CVVHD and CVVHDF), the 
absence of calcium in the dialysate favors diffusive clear-
ance of citrate–calcium complexes; however, more recent 
research using replacement solution that contain calcium 

Fig. 4  Regional unfractionated heparin–protamine. Regional antico-
agulation of the circuit is achieved by constant infusion of UFH into 
the hemofilter arterial line along with a constant infusion of prota-
mine administered post-filter on the return line of the extracorporeal 
circuit. Although most protocols are difficult to standardize, in prac-

tice, UFH at 1000–1500 IU/hour is infused pre-filter and neutralized 
with post-filter protamine at 10–12  mg/h. The heparin–protamine 
complex is taken up by the reticuloendothelial system and broken 
down, but then heparin and protamine are released back into the cir-
culation

Fig. 5  Citrate–calcium complex. The separation between the two 
positive charges of calcium is equivalent to the separation between 
two citrate carboxylate radicals. One of the carboxylate radicals is 
not bound, resulting in a residual negative charge and a slightly acidic 
effect
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has demonstrated a reduction in the need for intravenous 
calcium infusion [51, 52].

Citrate accumulation can be a potentially serious com-
plication and can be identified by measuring citrate levels 
[53], which are poorly available, since plasma citrate has a 
very rapid metabolism and remains for approximately 5 min 
before being completely transformed into bicarbonate. For 
this reason, indirect signs should be evaluated, which have 
high predictive value: total calcium/ionic calcium ratio ≥ 2.5 
(reflecting an increase in calcium bound to anions), a pro-
gressive increase in intravenous calcium infusion require-
ments, and the presence of progressive metabolic acidosis 
with high anion gap (Fig. 8). It requires prompt management, 
consisting of decreasing blood flow (in CRRT machines with 
blood flow and citrate coupling) or stopping the citrate infu-
sion (severe cases) and increasing the flow of dialysis and/
or replacement fluid in order to increase the extracorpor-
eal clearance rate. It must be differentiated from net citrate 
overload, a benign situation secondary to excessive citrate 
administration or decreased extracorporeal clearance (due to 
insufficient dialysate/ultrafiltration flows or membrane clog-
ging) in a patient with normal citrate metabolizing capacity, 

instead generating metabolic alkalosis without hypocalcae-
mia (Table 2) [39].

Citrate also has a high affinity for ionic magnesium, so 
it must be monitored at least every 12 h and supplemented 
to avoid complications secondary to decreased blood levels 
[54].

Future directions

While our review has highlighted the advantages of citrate 
over heparin in CRRT, it opens several potential avenues for 
future research. First, there is a need to further investigate 
the potential survival benefits of citrate, as the current lit-
erature does not provide a conclusive answer. Second, the 
variability in regional anticoagulation protocols with citrate 
requires more research to develop a standardized, universally 
adopted protocol. Such uniformity would greatly improve 
the comparability and interpretability of future clinical trials 
and studies. The lack of formal contraindications for cit-
rate use in the literature further warrants an investigation to 
identify scenarios where citrate use may be ill-advised or 

Fig. 6  Citrate load metabolism in regional citrate anticoagulation. 
The amount of citrate that remains in the body after being infused 
into the extracorporeal circuit is called the metabolic load of citrate. 
This load can be calculated by subtracting the amount of citrate lost 
in the effluent from the amount infused. The liver plays a primary role 
in breaking down this citrate load through the aerobic pathways of the 
Krebs cycle, with skeletal muscle and kidneys contributing to a lesser 
extent. Thus, the overall balance of citrate in the body, which deter-
mines systemic citrate levels, is determined by the difference between 
the citrate load and its metabolic disposal. Although patients with 
liver disease may experience reduced metabolic clearance of citrate 
and prolonged half-life, there have been no significant differences in 

citrate kinetics between patients with acute kidney injury and those 
with normal renal function. Citrate, in addition to providing regional 
anticoagulation by chelating calcium, also acts as a buffer. It is rap-
idly converted to bicarbonate. In this process, citric acid, which has a 
short plasma half-life of approximately 5 min, is metabolized to  CO2 
and  H2O and the final net production of bicarbonate will depend on 
the proportions of sodium and hydrogen in the citrate solution. Bicar-
bonate gain from citrate loading has a positive effect in correcting 
AKI-related metabolic acidosis. On the other hand, excessive bicar-
bonate generation that overcomes base deficiency will cause meta-
bolic alkalosis
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Fig. 7  Basic principles of regional citrate anticoagulation in RRT: 
Sampling for systemic ionized calcium is from the circuit arterial line 
or the patient’s arterial line (to avoid the effects of vascular access 
recirculation). Systemic total calcium can be measured from a central 

venous line. iCa ionized calcium; Qb blood flow rate, CRRT  continu-
ous renal replacement therapy, CaCl calcium chloride, and Ca-Gluc 
calcium gluconate

Fig. 8  Interpretation of calcium levels in citrate overload: Total cal-
cium (totCa) is the sum of ionized calcium (iCa), the fraction of 
calcium bound to proteins, and calcium bound to other anions (e.g., 
the little amount of citrate that normally exists in plasma). During 
regional anticoagulation (RCA), the citrate that is not eliminated by 
convection or diffusion enters the bloodstream and is rapidly metabo-
lized, although transiently, the amount of totCa may increase because 
more citrate will be available to bind calcium. When metabolism is 
decreased (severe liver and renal failure), plasma citrate will increase 
and bind free calcium, resulting in decreased iCa, but elevated totCa 
value; this is because measuring instruments that detect calcium will 
also measure citrate–calcium complexes in the plasma. However, the 
ion selective electrode that measures iCa will only measure the free 

fraction, which has decreased because it has been chelated by citrate. 
A totCa/iCa ratio ≥ 2.5 correlates well with elevated plasma citrate 
levels. Therefore, citrate accumulation is characterized by low iCa 
level (chelated by excess of citrate) and elevated totCa (citrate bound 
to calcium plus increased higher calcium infusion rates needed in 
intoxication) which result in increased totCa/iCa ratio. Also, meta-
bolic acidosis with increased anion gap (citrate is a weak acid). Rec-
ognition or suspicion of citrate accumulation should be managed by 
decreasing or stopping citrate administration, but always continuing 
RRT to allow clearance of circulating citrate (iCa is represented in 
mmol/L in the figure, while totCa is in mg/dL; however, to interpret 
the relationship, both values must have the same measure unit)
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harmful. Similarly, the establishment of an optimal regional 
anticoagulation monitoring strategy is yet another impera-
tive for future research, because it is critical for ensuring 
safety and efficacy of the therapy. The patient population 
for renal replacement therapy is diverse, and understanding 
the specific risks associated with certain subgroups would 
greatly optimize the individualized management of citrate 
anticoagulation, enabling clinicians to better tailor treatment 
strategies based on patients’ risk profiles. Lastly, the cur-
rent literature does not provide a comprehensive analysis 
of the cost-effectiveness of citrate use over other strategies 
in CRRT. In the era of increasing healthcare costs, it is cru-
cial to ensure that cost-effective therapies are identified and 
promoted to provide the best care at the least cost. Taken 
together, these future directions have the potential to greatly 
improve the use of citrate in CRRT and should be the focus 
of future research efforts.

Conclusion

Heparin continues to be the most widely used anticoagulant 
in the world given its low cost and ease of use; however, it 
has multiple adverse effects beyond the risk of bleeding, 
which can affect the outcomes of critically ill patients. The 
use of regional citrate makes it possible to avoid the systemic 
effects associated with anticoagulation. Importantly, under-
standing its metabolism and monitoring strategies allows 
for safe and well-controlled application through manual or 
automated protocols, effectively avoiding potentially severe 
metabolic adverse effects. Future research should focus on 
standardizing protocols, investigating survival benefits, and 
assessing cost-effectiveness to optimize the use of citrate 
and improve the care of critical ill patients undergoing 
renal replacement therapy. By embracing citrate’s poten-
tial and refining its application, healthcare practitioners can 
enhance patient outcomes and deliver more targeted and safe 
therapies.
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